
Int. J. SolIds Structu"s Vol. 22. No.2. pp. 121-134. 1986
Printed In Great Britain.

0020-7683/86 53.00.;..00
(C 1986 Pergamon Press Ltd.

ON CRACK-TIP STRESS STATE: AN EXPERIMENTAL
EVALUATION OF THREE-DIMENSIONAL EFFECTS

ARES J. RosAKlst and K. RAVI-CHANDAR:j:
Graduate Aeronautical Laboratories. California Institute of Technology. Pasadena. CA

91125, U.S.A.

(Receil'ed 28 April 1984; in revised form 22 Marcil 1985)

Abstract-The extent of the region of three-dimensionality of the crack-tip stress field is in­
vestigated using reflected and transmitted caustics. The range of the applicability of two-di­
mensional near tip solutions is thus established experimentally. The experiments are performed
using Plexiglass and high-strength 4340-steel compact tension specimens. A wide spectrum of
thicknesses is investigated. At each thickness, measurements are performed at a variety of
distances r from the crack tip, ranging from rlil = 0 to rlil = 2. where iI is the specimen
thickness. The results indicate that plane-stress conditions prevail at distances from the crdck
tip greater than half the specimen thickness, while no significant plane-strain region is detected.
The experimental results are also compared to the crack-tip boundary-layer solution of Yang
and Freund[I], and the numerical results of Levy, Marcal and Rice[2]. Their solutions are
consistent with the results of this work and approach the plane stress field at rlil = 0.5. In
addition, and unlike what might be commonly expected, the analytical solution[\] exhibits no
plane-strain behavior very near the crack tip. This behavior is in good agreement with the
results of both the transmission and the reflection experiments.

I. INTRODUCTION

It has long been recognized that in plates of finite thickness. the stress field at the
vicinity of stress raisers is three-dimensional in nature. The problem of a hole in an
infinite plate has been successfully addressed in the works of Sternberg and Sa­
dowsky[3] and Alblas[4]. The more complex problem of a crack in a thick plate has
been attempted by a number of authors[5-8l, but no complete solution has been ob­
tained as yet.

The purpose of this paper is not to solve this complex problem in detail, but rather
to explore regions where two-dimensional approximations would be acceptable. In
particular, we attempt to identify the regions in which local experimental measure­
ments based on two-dimensional theory can be performed with confidence. Such local
measurements are based on the use of photoelasticity, interferometry or caustics (sha­
dowgraphy), where data are usually obtained at some characteristic distance r from
the tip. The constraint on the location of r, if a two-dimensional view point is adopted,
is the existence of a K-dominant field (negligible high-order term effects and contained
yielding). However, in plates of finite thickness, three-dimensional effects near the tip
must assume a role at least as important as the above constraints. In the sequel such
three-dimensional effects were investigated for Plexiglas in transmission and 4340 steel
in reflection, using the optical method of caustics.

Recently, Yang and Freund[ll, motivated by similar concerns regarding experi­
mental measurements made in the vicinity of the crack tip, have explored the three­
dimensional crack problem using a boundary-layer approach. Their analytical results
have a close relationship to the present investigation, and will be compared in detail
in Section 5. Also, the numerical results of the same problem presented by Levy, Marcal
and Rice[2] will be compared with experiment.
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~, THEORETICAL CONSIDERATIONS

Consider a semi-infinite mode-I crack in a homogeneous isotropic linear-clastic
solid of uniform undeformed thickness h. The crack is assumed to be mathematically
sharp with a straight crack front. If a local Cartesian coordinate system is introduced
at the crack with its origin situated at the middle of the crack front (see Fig. I). then
the stress field at the vicinity of the crack tip can be expressed as a function of the
dimensionless coordinates X31 h, rlh. as well as the angular variation 1}. In particular

CT = CT (x3Ih, rlh. 1}), (2.1 )

where r~ = xT + x~, {} = tan - I (x~/x.>.

The choice of h as a normalization parameter is dictated by the observation that.
for the problem considered, the thickness is the only relevant length scale. In addition.
expression (2.1) must be such as to reduce to the familiar two-dimensional singular
asymptotic stress field when conditions of either plane stress or plane strain are ap­
proached. More specifically, the value of the nondimensional variable rlh must reflect
the changing nature the stress field as the crack front is approached from infinity. For
rlh~ :le, plane-stress-like conditions are expected to prevail-this being true for either
very thin specimens and/or for large distances from the crack line. Also for r/h~ 0,
and x 31h ¥ ± ~, a plane-strain type of field is expected to dominatet-this being true
for either thick specimens and/or small distances from the crack line. Thus. in general.

Kw {Kw
CT = CT(x3Ih, rlh, 1}) ~ • ;;:;--·f({}) K.

v 21Tr E

for rlh ~ x}
for rill ~ 0 . (2.2)

where Kw and K E, are the mode-! plane-stress and plane-strain stress-intensity factors.
respectively, and f({}) is a tensor function of {}, completely determined by the two­
dimensional asymptotic near-tip analysis[9). The region near the tip, where rlh is neither
very large nor very small, is in general an area where three-dimensional effects are
expected to be very strong. This region becomes particularly important in fracture
mechanics for the following two reasons: First, from the theoretical point of view.
accurate solutions describing the stress behavior there have been particularly elusive.
Second. from the experimental point of view, it seems that despite its great three-

- h/2

o
"I

Fig. I. Semi-infinite crack in plate of thickness h,

t As r/h -> 0 and x,.!h = ± ~ (points on specimen surface near the crack front) the nature of the
singularity deviates from its two-dimensional nature due to the existence of a free corner there(5-7]. On the
other hand, for x~/h oF ± ! (points inside the specimen) conditions of plane strain are expected to dominate
if the crack front is approached close enough.
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dimensionality, this region has been selected in a number of experiments as a site of
measurements, unfortunately interpreted on the basis of two-dimensional solutions.

In this work we will not attempt the solution of the very complicated three-di­
mensional problem. Instead, we have chosen to investigate the size of the annular zone
of three-dimensional effects. In order to do so, we have introduced a couple of sim­
plifying assumptions, which do not affect the three-dimensional nature of the field. Our
assumptions do not predict the detailed character of the three-dimensional state, and
have been introduced on the basis of qualitative preliminary experimental observations.
which will be discussed later.

In particular we have assumed that the components of the stress field can be
expressed as follows:

(2.3)

where Ki(X3/h, r/h), i = 1,2,3 are unknown functions of x3/h and r/h. In eqns (2.3).
and in the remaining paper, Greek indices will have the range 1, 2.

Expressions (2.3) assume that only the {} dependence is separable, and do not
provide any information concerning the nature of the r/h dependence of the stress field.

The separability of the {} dependence, as well as the requirement that expressions
(2.3) reduce to eqns (2.2) for r/h -+ 0 and r/h -+ 00, imply that

III = III = cos %[1 - sin {}/2 sin 3{}/2),

I 22 = I II = cos %[1 + sin {}/2 sin 3{}/2),

II2 = I12 = sin {}/2 cos {}/2 cos 3{}/2,

I 33 = fJ3 = 2v cos {}/2.

\:Ir/h,
(2.4)

Also for the plane-stress limit, as r/h -+ 00, KI,3(X3/h, r/h) -+ Kw and K2(X3/h. r/h)-+
O. And that for the plane-strain limit, as r/h -+ 0, K,(X3/h, ,./h) -+ KE and K2,3(X3/h,
r/h) -+ O. Thus the governing equations can be written as

(2.5)

where

i(;(X3/h, r/h) = Ki(X~: r/h) .
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3. THE METHOD OF CAUSTICS

Physical principle
Consider a family of light rays parallel to the X3 axis, incident on a planar specimen

whose midplane lies at X3 = 0 (cf. Fig. 2). Upon reflection from an opaque specimen,
or refraction through a transparent specimen, the rays undergo an optical path change
dictated by the stress field, and in general will deviate from parallelism. Under certain
stress gradients, the reflected or refracted rays will form an envelope in the form of a
three-dimensional surface in space. This surface, which is called the caustic sUlface,
is the locus of points of maximum luminosity in the reflected or transmitted light fields.
The deflected rays are tangent to the caustic surface. If a screen is positioned parallel
to the X3 = 0 plane, and so that it intersects the caustic surface, then the cross-section
of this surface can be observed as a bright curve (the so-called caustic curve) bordering
a dark region (the shadow spot) on the screen. Suppose that the incident ray, which
is reflected from or transmitted through point P(XI, xz) on the specimen, intersects the
screen at the image point P(X1, Xz) (cf. Fig. 2.). The Xl, Xz coordinate system is
identical to the Xl, Xz system, except that the origin of the former has been translated
the distance zo to the screen (zo can be either positive or negative). The position of the
image-point P will depend on the gradient of the optical path change t:. S, introduced
by the medium and on the distance zo, and is given by [10]

(3.1)

- VIrtual Screen

iReol Screen

SpecImen

________.L.~~-.

----+-~~

Fig. 2. Schematic of the formation of the caustics by (a) reflection and (b) transmiSSIOn.
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For the reflection case, !!lS = - 2U3(XI, X2, h/2) where U3 is the displacement in the
X3 direction.

Equation (3.1) is a mapping of the points on the specimen onto points of the screen.
If the screen intersects the caustic surface, then the resulting caustic curve on the
screen is a locus of points of multiple reflection. That is, for points on the caustic curve,
the mapping (3.1) is not invertible and the determinant of the Jacobian matrix of the
transformation must vanish, i.e.

(3.2)

Equation (3.2) is the necessary and sufficient condition for the existence of a caustic
curve. The points on the specimen for which the Jacobian vanishes are the points from
which the rays forming the caustic curve emerge. These rays are tangent to the caustic
surface at its intersection with the plane of the screen. The locus of the points on the
specimen mapped onto the caustic curve is called the initial curve. Equation (3.2)
describes the initial curve and its strong parametric dependence on Zoo Rays emerging
from within the initial curve map outside the caustic curve, and therefore only the rays
emerging from the initial curve determine the geometry of the caustic curve. This
characteristic of the optical mapping is vital to this work. By varying the position Zo
of the screen, the size of the initial curve (radius r) is varied. Thus the near-tip topology
can be investigated at various distances r from the crack tip.

Caustics by reflection
For opaque specimens, caustics are formed by the reflection of light rays from the

highly polished specimen surface. The shape of the caustic curve depends on the near­
tip normal displacement U3 of the plate face initially at X3 = h/2, which is given by

where E33 is the direct strain in the thickness direction. For a linearly elastic solid,

and thus using (2.5),

where

2hvKw
u3(r/h, {}, h/2) = . r.;- p(r/h) cos({}/2)

Ev27Tr

(3.3)

(3.4)

We have chosen to denote the function Kwp(r/h) as KEXP, since it may be possible
to measure this quantity for different values of r/h. Appropriate variations of zo allow
us to obtain initial curves at different distances r from the crack tip.

Caustic by transmission
For transparent specimens the optical path change !!l S depends on both local

changes in thickness and on local changes of refractive index, and can be expressed
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in a manner similar to the two-dimensional case in [10] as

fc
1/2 fc I

AS(xl, X2) = 2(n - I)h 0 E33 d(x,/h) + 2h An d(x./h),
o .

where the change in refractive index An is given by

0.5)

and where A is the stress-optic constant[10]. Substituting the above together with (2.5)
and (3.3) into (3.5) gives .

where

and

A ( /h
2hcaKw /

s r ,fj) = . r;;- p (r/h) cos {}f2,
v21fr

CIT = [A - (n - 1) ~] , plane-stress optical constant.

~ = [(n - 1) ~ + AVJ .

(3.6)

Evaluation of the mapping
Substituting eqn (3.4) or (3.6) into the equation of the mapping (3.1), one obtains

where

aKEXP
XI = r cos fj + 'YKEXP r - 3/2 cos 3fj/2 + 'Y ----a;:- r - 112 cos fj/2 cos fj,

yaKEXP ,. .
X2 = r sin fj + 'YKEXPr-3/2 sin 3fj/2 + r- I/• sm fj/2 sm .<l.

ar u ,

(3.7)

K EXP = p(r/h)Kw for reflection,

K EXP = p' (r/h)Kw for transmission.

The first two terms of the right-hand side are the traditional two-dimensional caustic
terms.

The presence of the third term should alter the geometry of the caustic curve and
therefore the relation between KEXP(rth) and the dimensions of the caustic, However,
extensive experimental observations of the caustic geometry (in particular, the aspect
ratio) have demonstrated that the epicycloidal shape expected on the basis of the first
two terms is retained (cf. Fig. 3). The photographs in Fig. 3 demonstrate that despite
drastic changes in r/h. the caustic-curve shape remains unchanged. This suggests that
the effect of the third term in expression (3.7) must be small compared to the second
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<a)

<b)

Fig. 3. Comparison of two caustic-curve shapes obtained at different distances from the crack
tip. Both photographs correspond to the same experiment: (a) r/h = 0.9; (b) r/h = 0,15

term. This means that the ratio of the two terms is small, implying that
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_1_ oK
EXP

= 0 (!)
KEXP or r as r- O. (3.8)

Assuming the validity of eqn (3.8), one recovers from eqn (3.7) the traditional caustic
equations, with the exception that the experimentally determined stress intensity KEXP

now varies with r/h. The caustic curve is then an epicycloid, and the "initial curve"
is a circle of radius r. The radius of the initial curve r depends on the choice of zo, and
was varied during the experiment. By changing zo, a number of optical measurements
were performed at different distances from the crack tip.

The initial curve,
As noted earlier in this section, the condition for the existence of a caustic curve

on a screen at X3 = 'Zo, is the vanishing of the Jacobian of the transformation (3.7).
With reference to eqn (3.2), and assuming the validity of eqn (3.8), the condition that
the determinant of the Jacobian matrix must vanish becomes

(
3 )2/5

J = r - 2 'Y KEXP (3.9)

Equation (3.9) describes the initial curve on the specimen surface. Then substitution
of eqn (3.9) into eqn (3.7) yields the equation of the corresponding caustic curve in the
XI' X2 plane, parametric in angle -a. For the case under consideration, the equation of
the caustic curve becomes

XI = r[cos -a + 2/3 cos 306/2],

X2 = :[sin -a + 2/3 sin 306/2],

-1T<o6<1T,

(3.10)
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where r is constrained by eqn (3.9). Equation (3.10) is the equation of an epicycloid.
whose shape remains unchanged as r is varied. This result was confirmed (see Fig. 3)
during the experiment, and thus assumption (3.8) was justified.

. On the other hand, the absolute size of the caustic curve depends on the value of
KEXP

, the bulk material properties, Zo, and the optical constants. In fact. eqn (3.10) is
a relationship among all of these parameters. Thus if the values of the material. geo­
metrical and optical parameters are known, then eqn (3.10) provides a relationship
between the size of the caustic curve and the local value of KEXP

. Adopting the max­
imum transverse diameter DI"2 = max(Xz) as the characteristic dimension of the caustic
curve, the value of KEXP

, measured at a distance,. (initial-curve radius) from the crack
tip, can be expressed as

where

934 X 1O- 2Ds/2
K EXP = -'----­

zoch
(3.11 )

{
C<Y

C = viE
for transmission.
for reflection.

Also, from eqns (3.9) and (3.11), it can be demonstrated that the maximum trans­
verse diameter of the caustic is related to the radius of the initial curve by the formula

D = 3.163,.. (3.12)

4. EXPERIMENTAL CONSIDERATIONS

In order to undertake an experimental investigation of thickness effects, careful
experiments have to be designed so as to isolate this effect from other geometry-related
effects on the stress field. This requirement implies that the only length scale in the
problem is the thickness, or, equivalently, that the in-plane dimensions be large in
comparison to the thickness. However, cost considerations limit the in-plane dimen­
sions, especially when large thicknesses are involved and a compromise between the
more important mechanics considerations and cost essentially dictates the sizes of the
specimens. The final choice of specimen geometry is illustrated in Fig. 4. Two materials
were chosen for these experiments. Plexiglas was selected for investigation in trans­
parent cases because of its easy availability in various thicknesses. For investigating
opaque specimens, a 4340 martensitic steel, heat treated to 843°C and oil quenched.
was selected because its high yield strength precluded plasticity effects that might
hinder the thickness-effect investigation.

The plane stress-intensity factor for the geometry shown in Fig. 4 can be obtained
from analysis, and is given by [11]

PYa (G 1 d)
K 2D = -h- F, b' b' I . (4.1 )

where F1 is a function of crack length G, ligament length d, specimen height I, and the
distance between loading points 2d. Also, P is the applied load: This value of Kw will
be used in the sequel to compare with the experimentally determined values of the
stress-intensity factor, KEXP • The method of caustics is used to determine the value
of KEXP • The analytical basis for the use of the traditional caustics relation.s has been
discu'ssed in Section 3. Thus

K EXP = 9.34 X 10-
2

D S/2

zoch '
(4.2)
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(a)

(b)

Fig. 4. The specimen geometry: (a) Plexiglas; (b) flat and highly polished Martensitic 4340 carbon
steel.
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where zo is the reference distance, h is the plate thickness, D is the maximum transverse
diameter of the caustic, and c is the appropriate optical constant: Ca for plane stress,
C. for plane strain, or vIE for reflection. D is related to the initial-curve radius r by the
formula D = 3.163 r, see Section 3.

Two sets of experiments were performed: the first set with transparent Plexiglas,
and the second set with martensitic 4340 steel. For the Plexiglas experiments, the plane­
stress value of C = Ca = 1.08 X 10- 10 m2/MN[l0] was used in evaluating KEXP • For
the steel specimen, the value of C = vIE, where v is the Poisson's ratio, and E is the
Young's modulus. In these two sets of experiments, there is a fundamental difference
in the way that information is extracted experimentally. In Plexiglas, the light rays
travel through the specimen and emerge with the integrated effect of the stress field
in the specimen. Whereas in the opaque specimen, the strain E33 accumulates through·
the thickness, thereby presenting a dimpled surface from which light rays reflect to
form the caustic curve. In other words, the Plexiglas experiments provide an optically­
averaged value of KEXP , and the 4340-steel experiments give a materially-averaged
value of KEXP • However, since both materials have similar Poisson's effect, one might
reasonably expect that the thickness effects in the two cases might present similarities.

The specimen preparation was a major part of the whole experiment. While the
exterior geometry is easily machined, achieving proper crack-tip conditions is of pri­
mary importance. In order to compare the experimental results obtained for various
thicknesses, the crack front must not possess any curvature. This was easily achieved
in steel specimens where the crack was made using an EDM spark-cutter. The metallic
specimen is shown in Fig. 4(a). For the Plexiglas specimens, after a lot of trial and
error, it was found that the best way of producing straight crack fronts was to start
with a machined Chevron notched crack front and grow the crack front under quasi-
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Fig. 5. Ratio of stress-intensity factor inferred from local shadow spot measurements (trans­
mitted caustics) to analytical two-dimensional value, vs distance from crack tip divided by

specimen thickness. Material: Plexiglas.

static conditions, rather than cyclic loading conditions. The resulting crack front from
a specimen of 6.35-mm thickness is shown in Fig. 4(b).

In order to use the method of caustics in an opaque material, the undeformed
surface of the specimen has to be a flat reflector. This was achieved by grinding, lapping
and polishing the specimen to have a half-a-wavelength surface flatness. For Plexiglas,
no special surface preparation was necessary. In the experiment, a collimated laser
beam passes through the specimen thickness in the transparent case and reflects from
the deformed surface in the opaque case. Due to the specimen deformation, the orig­
inally collimated light beam forms a caustic surface, as discussed in Section 3. A camera
is focused on a plane at a distance zo from the specimen, and the caustic curve on that
plane is photographed. From the diameter of the caustic, the stress-intensity factor is
calculated using eqn (4.2). This corresponds to making a measurement at a distance r
from the crack tip, where r is the initial-curve radius. Since there are no light rays
inside the caustic surface (cf. Fig. 2), this implies that the light rays that pass through
the specimen at radii less than r do not provide any information in this reference plane.
T.herefore, by varying the distance zo, it is seen from Fig. 2 that measurements of KEXP

may be made at various distances r from the crack tip. This is easily done by changing
the plane-of-focus of the camera. However, in order to retain the same magnification,
the camera itself was moved to obtain different zo and r values.

Material; Martensitic 4340
(843 C, Oil Quenched)

Thickness(mm): 6.35. 9.53, 12.7

2.0

1.5

K
EXP

1.0
K 20

.'

0.5 ." ".

•

0.0
I

0.0 0.5 1.0 1.5 2.0 2.5

r/h

Fig. 6. Ratio of stress-intensity factor inferred from local shadow spot ~eas~~ements (refl~cted
caustics) to analytical two-dimensional value, vs distance from crack tIp divided by specimen

thickness. Material: Martensitic 4340 carbon steel.
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Plexiglas specimens, of thicknesses 1.59-25.4 mm, were tested in an Instron load­
ing machine at loads varying from 100 to 250 N. The zo distance was varied between
0.005 and 10 m. This resulted in a rlh variation from about 0.01 to 2. The results are
plotted in normalized variables. The experimentally obtained KEXP is normalized by
K2D and plotted as a function of rlh in Fig. 5 for Plexiglas. Three thicknesses (6.35,
9.53 and 12.7 mm) of the 4340 steel were tested in reflection at loads varying from 1
to 16 KN. The ratio of rlh was varied from about 0 to 0.6. In the reflection arrangement,
increasing rlh above 0.6 proved to be increasingly difficult due to limitations in the
experimental arrangement. The experimental results of KEXPIKw are plotted as a func­
tion of rlh in Fig. 6.

5. DISCUSSION

The most striking feature of the experimental results displayed in Figs. 5 and 6 is
the rlh similarity. In particular, the Plexiglas results contain data from 12 different tests
using six thicknesses. Each of the tests covers different but overlapping range of rlh.
In all cases, the K EXPIK w exhibits the same rlh dependence. Also, in the case of the
4340 steel, rlh is the scaling parameter. This common rlh dependence will be referred
to here as the "master curve", which, however, is different in transmission and re­
flection. Furthermore, it is clear from both the curves that for rlh > 0.5, KEXP ap­
proaches Kw . Since a plane-stress caustics analysis was used in evaluating KEXP, and
in view of the rlh similarity, it is apparent that plane-stress conditions prevail at dis­
tances from the crack tip which are greater than half the specimen thickness.

For rlh < 0.5, three-dimensional effects seem to take over and the validity of a
two-dimensional analysis becomes questionable. Moreover, experimental measure­
ments based on two-dimensional analyses, ifperformed at rlh < 0.5, are likely to contain
large errors which increase as rIh decreases. The usual practice has been to make local
measurements at very small distances from the tip, to ensure a K-dominant two-di­
mensional asymptotic field (implying negligible higher-order term effects). As dem­
onstrated in Fig. 5, the error due to the three-dimensional effects in the near-tip region
(rih < 0.5) seems to be more important than the neglect of higher-order terms in the
far field (0.5 < rlh < 2.0), where the plane-stress result seems to be valid.

The existence of a region with strong three-dimensional effects is not surprising,
and was anticipated in Section 2. Also, as rlh decreases, a plane-strain regime is ex­
pected, particularly on the basis of plane-strain fracture toughness concepts. The results
displayed in Fig. 5 and 6 ought to identify the extent of a plane-strain region. In trans­
mission KEXPIKw must tend to the ratio of c.lca < 1, since the plane-stress analysis
of caustics was used. The master curve of Fig. 5 shows that KEXPIKw is continuously
decreasing below c.1ca = 0.7, instead of reaching a constant value over a substantial
range of rlh. This demonstrates that the region where plane-strain conditions are likely
to prevail is surprisingly small. In reflection, K EX1

>IKw must tend to zero under plane­
strain conditions, since reflections from a flat surface will not produce a caustic (au31
ar = 0). In Fig. 6, it is seen that KEXPIK2D indeed goes to zero, but not over a significant
range of rlh (Le. it goes to zero only right at the crack tip). This is consistent with the
results of transmission in indicating that the extent of the possible plane-strain region
is small.

To graphically illustrate the consequences of the experimental result in the re­
flecting specimen, Fig. 6 was replotted in terms of the variation of u3(rlh, {} = 0, X3
= h12) as a function of rlh, using eqn (3.4). This provides the profile of the deformed­
specimen surface at the vicinity of the tip. This profile is plotted in Fig. 7. It demon­
strates that deviations from the plane-stress solution occur for rlh = 0.5. This deviation
can be expected on the grounds that the plane-stress solution predicts a physically
unacceptable unbounded displacement U3 as rlh - O.

As rlh decreases below 0.5, a minimum in the displacement profile is indicated at
rlh = 0.4. For rlh - 0, the present experimental results displayed in Fig. 7 indicate

SAS Z:U·8
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r /h

o 0.5 1.0 1.5 2.0

0.5

u3 <8=0)

{ lIK~hlI2}

1.0

1.5

I
/

I
I
I

Experimental
Measurement

/"
,/

/
Z

/ ---- Plane Stress Solution

Fig. 7. Normalized out-of-plane displacement, U3(X\. 0, h/2), vs distance ahead of the crack tip
divided by specimen thickness (obtained by reflected caustics measurements).

that U3 may not vanish at the crack tip. Further experimental work using interferometry
is underway to investigate the details of this region.

The experimental results discussed above are in excellent agreement with the finite­
element calculations of Levy, Marcal and Rice[2] and the recent boundary-layer so­
lution of Yang and Freund[l]. Some of the results of [2] are displayed in Fig. 8, where
it is demonstrated that 0"33 approaches zero at rlh = 0.5, indicating the establishment
of plane-stress conditions at this distance. In the work by Yang and Freund, the state
of stress in an elastic plate containing through-cracks is investigated with a view toward
assessing the influence of transverse shear on the crack-tip stress and deformation
fields. A crack-tip boundary-layer solution is thus obtained, based on the assumption
of uniform through the thickness extensional strain. Their results are displayed in Fig.
9 and 10.

In Fig. 9, the nondimensional out-of-plane displacement U3(X) , 0, hI2), is plotted
vs (rlE.)lf2, which is to be compared with our Fig. 7. (e is a length parameter proportional
to h.) In Fig, to, the ratio of U3(XI , 0, h/2) and the corresponding plane-stress value is
plotted vs (rlh)lf2. This ratio is proportional to KEXP1Kw and can be compared to Fig.
6.

.5 1.0 1.5

Fig. 8. Variation of midplane 0"33 with normalized distance from the crack tip (from Levy, Marcal
and Ricel2)).
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by Wang and Freund[l).

The analytical results are in good agreement with the present experiments in a
number of issues. In particular, their solution is found to merge smoothly with the
plane-stress result, at distances from the tip of one-half the plate thickness. Figure 9
also displays a minimum in the displacement profile, but the location of this minimum
is closer to the crack tip than in the present experimental results. Finally, and as
demonstrated in Fig. 8, the lateral contraction U3 on the specimen surface does not
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Fig. 10. Out-of-plane displacement derived by corresponding value ~(XI. 0) or plane stress,
vs normalized distances ahead ofthe crack tip for v = 0.1.0.3.0.5. Analytical results by Wang
and Freund[l].
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exhibit plane-strain behavior very near the crack tip, "in contrast to what is commonly
assumed in problems of this type" [I].

6, SUMMARY AND CONCLUSIONS

1. The three-dimensional nature of the crack-tip field scales with thickness.
2. Plane-stress conditions prevail at distances from the crack tip greater than half the

specimen thickness.
3. No significant plane-strain region is observed. Only right at the crack tip (rlh =

0), U3 takes a constant value indicating conditions of generalized plane strain.
4. The rlh dependence of KEXP

/ K2D suggests that for 0 < rIh < 0.5 the stress gradients
are weaker than the corresponding two-dimensional gradients.

5. The experimental results are consistent with the analysis of Yang and Freund[ I]
and the numerical results of Levy, Marcal and Rice[2].
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